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Abstract
We use extensive event-driven molecular dynamics simulations to study the thermodynamic,
structural and dynamic properties of hard-sphere glasses. We determine the equation of state of
the metastable fluid branch for hard spheres with a size polydispersity of 10%. Our results show
a clear jump in the slope of the isothermal compressibility. The observation of a thermodynamic
signature at the transition from a metastable fluid to a glassy state is analogous to the abrupt
change in the specific heat or thermal expansion coefficient as observed for molecular liquids at
the glass transition. The dynamic glass transition becomes more pronounced and shifts to
higher densities for longer equilibration times.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The amorphous or glassy state, a property of nearly all
condensed matter systems, can be achieved by cooling or
compressing the (supersaturated) liquid sufficiently rapidly
beyond the glass transition. Glasses have a structure that
is nearly indistinguishable from that of the liquid phase, but
they can have dramatically different dynamical properties:
molecules in a glass can move 1013 times slower than in a liquid
phase [1]. How this is possible and whether this transition is
gradual or sharp and accompanied by a structural change and
diverging length scale is one of the main mysteries of glassy
materials. Despite the huge amount of work devoted to glasses,
the nature of the glass transition remains one of the deepest
and most interesting unresolved problems in condensed matter
physics [2].

Already in the 1930–1940s, it was shown by experiments
that many molecular liquids show, at the glass transition, a
rather abrupt change in measured thermodynamic quantities
like the specific heat, thermal expansion coefficient and the
isothermal compressibility [3]. The sudden drop in these
so-called thermodynamic susceptibilities, which are directly
related to thermodynamic fluctuations of the system or the
long-wavelength static correlation functions, is found in many
glass-forming systems, although it seems to be absent or very
small in some others [4]. In the liquid phase, the particles
vibrate at short times in the cages formed by their neighbors,
while at longer times, cooperative structural relaxation occurs.

The latter relaxation slows down at the glass transition and
the corresponding fluctuations no longer contribute to the
thermodynamic susceptibilities of the system. The mechanism
behind the freezing out of certain degrees of freedom can be
thermodynamic or dynamic of origin. The thermodynamic
mechanism arises from a structural change in the system, and
the dynamic mechanism occurs because the observation time
is too short for the system to reach equilibrium. According to
Kauzmann, one can distinguish the thermodynamic from the
dynamic mechanism by prolonging the observation time and
studying whether the change in the thermodynamic quantities
is still present at infinitely long times [3]. Whether the glass
transition is of dynamic or thermodynamic origin has been
hotly debated since then and has still not been settled.

In order to understand the glass transition, many
investigations have been devoted to idealized model systems
in which the particles behave as hard spheres. One might
suppose that the issue is settled for such a simple model by
computer simulations. While early simulation studies predict a
thermodynamic transition [5, 6], as there is a discontinuity in
the third or second derivative of the free energy, more recent
studies show no discontinuity at all [7, 9, 10]. In these recent
studies, large-scale molecular dynamics simulations were
performed for long equilibration times, while monitoring the
local crystalline order to obtain well-equilibrated, truly random
configurations along the metastable fluid branch. No evidence
of a second order or ideal glass transition was observed for
the well-equilibrated fluid state points. The existence of a
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Figure 1. (a) The pressure β P(t, η)σ 3 of hard spheres with a polydispersity of 10% as a function of t in MD time units for varying packing
fraction η (as labeled). (b) The pressure β P(t, η)σ 3 versus packing fraction η for varying time t = 1, 10, 100 and 1000. The solid line
denotes the Carnahan–Starling (CS) equation of state.

thermodynamic glass transition is, on the other hand, proposed
for hard spheres to avoid the paradox that the continuation
of the equation of state of the stable liquid phase exhibits a
divergence at unphysically high packing fractions, while one
expects a divergence at random close packing (η � 0.64) [15].
Experiments on colloidal hard spheres with diameter σ under
Earth’s gravity exhibit a glass transition at a volume fraction
η = πσ 3 N/6V � 0.58 with N the number of spheres and
V the volume [11], while no glass transition is found without
gravity [12, 13]. An ergodicity breaking transition is predicted
by mode coupling theory due to slow relaxation [14]. It
remains an open question as to whether there is, in the case
of hard spheres, an abrupt change in a thermodynamic quantity
at the glass transition, which one would expect on the basis of
molecular glasses.

In this paper, we use extensive computer simulations to
study the thermodynamic, dynamic and structural properties
of hard-sphere glasses. Our results show evidence of a
thermodynamic signature, i.e. an abrupt change in the slope of
the isothermal compressibility, at the dynamic glass transition.
Our findings are analogous to the abrupt change that has been
found in the specific heat or thermal expansion coefficients at
the glass transition of molecular liquids.

2. Method

We consider a system of hard spheres with a Gaussian diameter
distribution yielding a size polydispersity of 10% to prevent
crystallization. The distribution was cut off at five standard
deviations. We have checked the formation of crystalline
order by measuring the crystallinity [16]. We find no sign
of crystalline order or fractionation in our simulations, which
allows us to study the system for long times. We stress that
simulations of pure hard spheres (and smaller polydispersities)
do show crystallization for packing fractions 0.52 < η <

0.63 [17] and that, for sufficiently long times and large system
sizes, systems with a size polydispersity of 10% and η > 0.54
should partially crystallize as well [18].

We perform event-driven molecular dynamics (MD)
simulations with fixed volume, energy and number of particles.
We measure the pressure using the virial theorem [19].
We have checked that our results for the pressure agree

with the pressures obtained from the collision rate method
and the value obtained from the contact value of the
radial distribution function within statistical error. For our
initial configuration, we employ the mechanical contraction
method, which generates densely packed and highly jammed
configurations [20]. The initial velocities of the particles
are randomly chosen from a Maxwell–Boltzmann distribution.
The time t is measured in MD time units defined as√

mσ 2/kBT , where σ = (
∑N

i=1 σ 3
i /N)1/3 is the average

diameter, σi is the diameter of particle i and m is the mass
of the particles.

3. Results

First, we study the equation of state of the metastable
liquid branch. We perform simulations of 103 hard spheres
for varying packing fractions. We measure the pressure
β P(t, η)σ 3 as a function of time and we repeat the procedure
for up to 100 independent starting configurations. In
figure 1(a), we observe that the averaged pressure depends
strongly on the age of the sample. The initial pressure
is relatively high as the spheres are highly jammed in the
initial configuration, but as the system evolves in time the
particles rearrange to obtain more free volume and the pressure
decreases rapidly. At a later stage, the particles diffuse less
quickly as they are more caged and the pressure decays more
slowly. We observe that only the short-time aging behavior
is affected by the fine details of the protocol that is used
to generate the initial configurations. The results obtained
from an initial configuration generated with the event-driven
Lubachevsky–Stillinger algorithm [8] yield long-time behavior
which is indistinguishable from the simulations started with an
initial configuration generated with the mechanical contraction
method.

In figure 1(b), we plot the equation of state for different
times obtained from figure 1(a). For comparison, we also plot
the Carnahan–Starling (CS) equation of state for pure hard
spheres [21]. At low η, our simulations for polydisperse hard
spheres are almost indistinguishable from CS. Surprisingly, we
find a clear deviation of our pressure data from CS, which
shifts to higher packing fractions and becomes sharper when
the system ages.
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Figure 2. (a) The inverse compressibility χ−1
T as a function of packing fraction η for time t = 1, 10, 100 and 1000. The solid line denotes χ−1

T
obtained from the Carnahan–Starling equation of state, while the dashed lines are fits to guide the eyes. The statistical error is smaller than the
symbol size. (b) The slope of the compressibility (χ−1

T )′ as a function of η for time t = 1000. The solid line denotes (χ−1
T )′ obtained from the

Carnahan–Starling equation of state.

Figure 3. (a) The mean squared displacement 〈R2〉/σ 2 as a function of time in MD units for waiting time tw = 1 × 105 and varying packing
fractions η as labeled. (b) The long-time diffusion coefficient DL in units of σ

√
kBT/m as a function of η obtained from the mean squared

displacements.

To investigate this deviation, we calculate numerically
the derivative of our equation of state. The simplest form
of a numerical derivative was used d f (x)/dx ≈ ( f (x +
�) − f (x − �))/(2�) to obtain the inverse compressibility
χ−1

T = ρ(∂β Pσ 3/∂ρ) and its derivative for time t =
1, 10, 100 and 1000. We plot χ−1

T versus η in figure 2(a). For
comparison, we also plot χ−1

T obtained from CS. We observe
a sharp deviation from CS in the isothermal compressibility
in figure 2(a) which becomes more pronounced and shifts to
higher densities for longer aging times. In figure 2(b), we
plot the derivative of the inverse compressibility (χ−1

T )′ as
a function of η for time t = 1000. We clearly observe
a jump of nearly one order of magnitude in the slope of
the compressibility, i.e. the third-order derivative of the free
energy at η � 0.575, which corresponds to the dynamic glass
transition as observed experimentally [11]. The error bars were
obtained by calculating the standard error of independent sets
of simulations.

We wish to make a few remarks here. Instead of a
jump in a second-order derivative of the free energy (e.g. the
isothermal compressibility, specific heat) as in the case of many
molecular glasses, we find indications of a jump in the third-
order derivative of the free energy. In [5], it is speculated that
the change in order of the transition is related to the absence of
potential energy contributions in the case of hard spheres. The
isothermal compressibility is related to density fluctuations,
which consist of diffusional and vibrational contributions. At

the glass transition, diffusional contributions tend to zero,
and hence the slope of the isothermal compressibility will
change. For molecular glasses, potential energy fluctuations
will disappear at the transition, yielding a discontinuity in the
isothermal compressibility itself. It is interesting to investigate
whether soft repulsive and attractive spheres yield a jump in
a second-order derivative of the free energy (work along these
lines is in progress). This might mean that the actual order
of the dynamic glass transition is different for soft/attractive
systems.

The next question is to determine which degrees of
freedom are frozen at the glass transition. To this end,
we determine the mean square displacement (MSD) 〈R2〉/σ 2

with 〈· · ·〉 denoting an ensemble over all particles and
configurations. From the MSD we obtained the long-
time diffusion coefficients DL for ‘aged’ systems, i.e. the
measurement has been carried out after a waiting time tw =
1 × 105. Figure 3(a) shows that, for sufficiently high η, the
MSD develops a plateau as the structural relaxation slows
down. However, the plateau is finite for all η that we tested,
which is to be expected as the equilibration times for these
state points are shorter than t = 105. Figure 3(b) shows that
DL decreases upon increasing η, but it does not tend to zero at
η � 0.58, as was observed in experiments on colloidal systems
in gravity [14]. Since gravity plays an important role in the
formation of glasses [13, 12], the discrepancy is most likely
caused by the absence of gravity in our simulations.
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Figure 4. (a) The self-intermediate scattering function at a volume fraction of η = 0.58 for varying tw (see labels). (b) The self-intermediate
scattering function Fs(t) for ‘aged’ systems (tw = 1 × 105 or 1 × 106) for varying η (see labels) and for kσ = 8.2.

Figure 5. (a) The packing fraction ηg corresponding to the kink in χ−1
T as a function of time t . (b) The equilibration time τeq and the

relaxation time τ ∗
α as a function of packing fraction η.

In addition, we calculate the self-intermediate scattering
function Fs(t) for a wavevector close to the main peak of the
static structure factor, i.e. kσ = 8.2. We perform simulations
of 2000 hard spheres with a polydispersity of 10%. Figure 4(a)
shows that Fs(t) has a clear aging behavior: the structural
relaxation slows down dramatically for longer waiting times
as the time window of the plateau of the correlation function
increases. The particles get more arrested or caged upon
prolonging the waiting time and the plateau in Fs(t) grows in
temporal extent when the system ages. For η = 0.58, Fs(t) no
longer changes between tw = 1 × 105 and tw = 1 × 106 and it
is tempting to argue that the system reached the ‘equilibrium’
(but metastable with respect to a fractionated crystal phase)
state. In order to eliminate the aging behavior, we perform
long simulations of 1 × 107 time units. Figure 4(b) shows
Fs(t) for kσ = 8.2 and varying η for ‘aged’ systems (tw =
1 × 105 or 1 × 106). We clearly observe the development of a
plateau, which is characteristic of structural relaxation, but the
correlation function seems to decay to zero for all η. We note
that the correlation function decays to zero within t � 1000
for η = 0.58. However, for lower values of the wavevector kσ ,
the relaxation of Fs(t) from the plateau value becomes slower
and the time window of the plateau increases in contrast with
the predictions of simple mode coupling theory.

As we find a strong aging behavior in the equation of state
and its derivatives, we plot in figure 5(a) the packing fraction
ηg corresponding to the kink in the isothermal compressibility
as a function of ‘waiting’ time. As the kink in the isothermal

compressibility corresponds to a dynamic glass transition from
a metastable fluid phase to a metastable glass state, one can
identify the ‘waiting’ time as the time that is required to
equilibrate the metastable fluid at η � ηg. Figure 5(b) clearly
shows that a longer ‘waiting’ time is required to equilibrate a
system at increasing η. We now compare the equilibration time
τeq with the relaxation time τ ∗

α as defined by Fs(τ
∗
α ) = 0.02 for

kσ = 8.2. We plot the equilibration time as a function of η

along with τ ∗
α in figure 5(b). We find that the equilibration

time of the system as obtained from the kink in the isothermal
compressibility (see figure 5(a)) agrees well with the relaxation
time as obtained from the intermediate scattering function as
shown in figure 4(b). We note that the normal definition of the
relaxation time where Fs(τα) = e−1 is always lower than the
equilibration time obtained from the equation of state.

In conclusion, we find a clear jump in the slope of the
compressibility, which becomes more pronounced and shifts
to higher densities for longer aging times. According to
Kauzmann, the glass transition is of thermodynamic origin,
if the change in thermodynamics remains at infinite times. A
thermodynamic ideal glass transition has been predicted at a
Kauzmann packing fraction φK = 0.617 on the metastable
fluid branch in [15] using the replica method. However, the
existence of a thermodynamic ideal glass transition is heavily
debated. Our results show a nonequilibrium glass transition
at a density range of 0.55–0.59, which is far below the
theoretical predictions for the ideal glass transition. This is to
be expected as the relaxation time diverges on approaching the
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ideal glass transition [22], and hence it is impossible to reach
φK, since already at lower densities, the fluid gets arrested in
a nonequilibrium glass as the relaxation time becomes longer
than the simulation time.

Although the simulations discussed here were based on
polydisperse hard spheres, similar results were obtained with
pure hard spheres: the pressure decays with a power law until
crystallization sets in and diverges at a volume fraction that
is slightly lower than the polydisperse case. At densities well
below and above the glass transition we were able to obtain
similar pressure data as for polydisperse hard spheres but, close
to the glass transition, crystallization is so fast that we were not
able to obtain accurate results for sufficiently long times.

The search for a structural change or a diverging length
scale at the glass transition has been going on for a long time,
but has not yielded any definite results. However, there is some
evidence for a diverging length scale in dynamic correlation
functions at the glass transition. For example, Weeks et al
[23] have observed experimentally that clusters of fast moving
colloidal particles are much larger in the metastable fluid than
in the glass and that there is a sudden drop in cluster size at the
glass transition. Benneman et al have found a diverging length
scale of correlated motion at the glass transition in simulations
of a polymer melt [24].

As we provide evidence for a clear thermodynamic
signature at the dynamic glass transition, i.e. an abrupt change
in the third-order derivative of the free energy, one might
expect to find a structural change in one of the higher-body
correlation functions when the system falls out of equilibrium.
This can be understood from the virial expression that relates
the pressure to the contact value of the pair correlation
function. Subsequently, the first or second derivative of the
pressure, i.e. the inverse compressibility or its slope, can
then be expressed in terms of (the contact values of) a four-
body or higher-body correlation function, respectively. In
order to detect a discontinuity in the contact value of one of
these higher-body correlation functions, which is a very subtle
effect, one has to calculate these higher-body correlations
with sufficient statistical accuracy so that one can extrapolate
these correlation functions to the contact value with high
precision. Unfortunately, our efforts to calculate these higher-
body correlation functions were not sufficiently accurate close
to the dynamic glass transition that we could detect such a
discontinuity in the contact value. The main problem that we
encounter is that, close to the dynamic glass transition, the
system ages faster than that we were able to accumulate decent
statistics for the correlation functions. When we try to increase
our statistics by longer simulation times, the dynamic glass
transition simply moves to higher packing fractions.

4. Conclusion

We have used extensive event-driven molecular dynamics
simulations to study the thermodynamic, structural and
dynamic properties of hard-sphere glasses. We have
determined the equation of state of the metastable fluid branch
for hard spheres with a size polydispersity of 10%. We
demonstrated that the dynamic hard-sphere glass transition has
a thermodynamic signature, i.e. there is an abrupt change in
the second derivative of the equation state. Hence, we have
shown that the dynamic glass transition can be located by
measuring the equation of state or derivatives thereof, as was
already known for molecular glasses. Further we demonstrated
that the equilibration time of the equation of state corresponds
to the relaxation time as obtained from the self-intermediate
scattering function.
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